327 research outputs found

    Large-scale variability in marine stratocumulus clouds defined from simultaneous aircraft and satellite measurements

    Get PDF
    Satellite images often show significant variations in the structure of marine stratocumulus clouds on scales ranging from 10 to 1000 km. This is illustrated where a GOES West satellite image shows a well-defined variation in cloud structure near 32 N, 122 W on 30 June 1987. Aircraft measurements were made with the UK C-130 and the NCAR Electra on this day as part of the FIRE Marine Stratocumulus Intensive Field Observations (IFO). The mean, turbulent, and the microphysical structure of the clouds sampled in these two areas are compared an an attempt is made to explain the differences in cloud structure. In an attempt to identify any systematic differences between the measurements made with the two aircraft, data were analyzed that were collected on 14 July 1987 with the C-130 and the Electra flying in close formation at an altitude of 250 m. The microphysical and turbulence data are being compared in an attempt to explain the differences in the cloud liquid water content obtained with the two aircraft and the differences in cloud structure shown by the GOES image. In addition, data are being analyzed for three other days during the experiment when coordinated downstream flights were made with the Electra and the C-130

    Pyrgeometer data reduction and calibration procedures

    Get PDF
    May 1976.Pyrgeometer measurements from aircraft, by Bruce Albrecht, Michael Poellot, Stephen K. Cox.Includes bibliographical references (page 48)

    Large-scale response of the tropical atmosphere to radiative heating, The

    Get PDF
    March 1974.Includes bibliographical references.Sponsored by the National Science Foundation GA-36302

    Stratocumulus cloud height variations determined from surface and satellite observations

    Get PDF
    Determination of cloud-top heights from satellite-inferred cloud-top temperatures is a relatively straightforward procedure for a well-behaved troposphere. The assumption of a monotonically decreasing temperature with increasing altitude is commonly used to assign a height to a given cloud-top temperature. In the hybrid bispectral threshold method, or HBTM, Minnis et al. (1987) assume that the lapse rate for the troposphere is -6.5/Kkm and that the surface temperature which calibrated this lapse rate is the 24 hour mean of the observed or modeled clear-sky, equivalent blackbody temperature. The International Satellite Cloud Climatology Project (ISCCP) algorithm (Rossow et al., 1988) attempts a more realistic assignment of height by utilizing interpolations of analyzed temperature fields from the National Meteorological Center (NMC) to determine the temperature at a given level over the region of interest. Neither these nor other techniques have been tested to any useful extent. The First ISCCP Regional Experiment (FIRE) Intensive Field Observations (IFO) provide an excellent opportunity to assess satellite-derived cloud height results because of the availability of both direct and indirect cloud-top altitude data of known accuracy. The variations of cloud-top altitude during the Marine Stratocumulus IFO (MSIFO, June 29 to July 19, 1987) derived from surface, aircraft, and satellite data are examined

    Analysis of the GATE aircraft pyrgeometer instrumentation, An

    Get PDF
    Includes bibliographical references (page 28).November 1976.Significant differences in US and USSR aircraft measurements of hemispherical infrared irradiance were noted during GATE in-flight intercomparisons. In specific instances the downward irradiance measured by the USSR instrument (a Kozyrev pyrgeometer) was as much as 1.5 times greater than the irradiance measured with the US instrument (an Eppley pyrgeometer). A post-GATE intercomparison at Colorado State University verified these differences; the pyrgeometer measurements were compared with independent measurements obtained with an infrared bolometer and with a radiative transfer calculation. The differences noted during GATE and post-GATE intercomparisons may be attributed to differences in calibration techniques and the accurate determination of the temperature of the instrument's thermopile cold junctions. When corrections based upon this analysis were applied to the USSR data, the maximum intercomparison differences were less than 5 percent

    Turbulence spectra of the FIRE stratocumulus-topped boundary layers

    Get PDF
    There are at least four physical phenomena which contribute to the FIRE boundary layer turbulence spectra: boundary layer spanning eddies resulting from buoyant and mechanical production of turbulent kinetic energy (the microscale subrange); inertial subrange turbulence which cascades this energy to smaller scales; quasi-two dimensional mesoscale variations; and gravity waves. The relative contributions of these four phenomena to the spectra depend on the altitude of observation and variable involved (vertical velocity, temperature and moisture spectra are discussed). The physical origins of these variations in relative contribution are discussed. As expected from the theory (Kaimal et al., 1976), mixed layer scaling of the spectra (i.e., nondimensionalizing wavelength by Z(sub i) and spectral density by Z(sub i) and the dissipation rates) is successful for the microscale subrange and inertial subrange but not for the mesoscale subrange. The most striking feature of the normalized vertical velocity spectra is the lack of any significant mesoscale contribution. The spectral peak results from buoyant and mechanical production on scales similar to the boundary layer depth. The decrease in spectral density at larger scales results from the suppression of vertical velocity perturbations with large horizontal scales by the shallowness of the atmosphere. The spectral density also decreases towards smaller scales following the well known inertial subrange slope. There is a significant variation in the shape of the normalized spectra with height

    Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    Get PDF
    A cloud rift is characterized as a large-scale, persistent area of broken, low-reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of California was investigated using an instrumented aircraft to compare the aerosol, cloud microphysical, and thermodynamic properties in the rift with those of the surrounding solid stratocumulus deck. The microphysical characteristics in the solid stratocumulus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Furthermore, cloud condensation nuclei (CCN) concentrations were found to be about 3 times greater in the solid-cloud area compared with those in the rift. Although drizzle was observed near cloud top in parts of the solid stratocumulus cloud, the largest drizzle rates were associated with the broken clouds within the rift area and with extremely large effective droplet sizes retrieved from satellite data. Minimal thermodynamic differences between the rift and solid cloud deck were observed. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud–rift boundary is presented. This mesoscale circulation may provide a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill. A review of results from previous studies indicates similar microphysical characteristics in rift features sampled serendipitously. These observations indicate that cloud rifts are depleted of aerosols through the cleansing associated with drizzle and are a manifestation of natural processes occurring in marine stratocumulus

    A Closed-Form Expression for the Gravitational Radiation Rate from Cosmic Strings

    Full text link
    We present a new formula for the rate at which cosmic strings lose energy into gravitational radiation, valid for all piecewise-linear cosmic string loops. At any time, such a loop is composed of NN straight segments, each of which has constant velocity. Any cosmic string loop can be arbitrarily-well approximated by a piecewise-linear loop with NN sufficiently large. The formula is a sum of O(N4)O(N^4) polynomial and log terms, and is exact when the effects of gravitational back-reaction are neglected. For a given loop, the large number of terms makes evaluation ``by hand" impractical, but a computer or symbolic manipulator yields accurate results. The formula is more accurate and convenient than previous methods for finding the gravitational radiation rate, which require numerical evaluation of a four-dimensional integral for each term in an infinite sum. It also avoids the need to estimate the contribution from the tail of the infinite sum. The formula has been tested against all previously published radiation rates for different loop configurations. In the cases where discrepancies were found, they were due to errors in the published work. We have isolated and corrected both the analytic and numerical errors in these cases. To assist future work in this area, a small catalog of results for some simple loop shapes is provided.Comment: 29 pages TeX, 16 figures and computer C-code available via anonymous ftp from directory pub/pcasper at alpha1.csd.uwm.edu, WISC-MILW-94-TH-10, (section 7 has been expanded, two figures added, and minor grammatical changes made.

    Line-profile tomography of exoplanet transits I: The Doppler shadow of HD 189733b

    Full text link
    We present a direct method for isolating the component of the starlight blocked by a planet as it transits its host star, and apply it to spectra of the bright transiting planet HD 189733b. We model the global shape of the stellar cross-correlation function as the convolution of a limb-darkened rotation profile and a gaussian representing the Doppler core of the average photospheric line profile. The light blocked by the planet during the transit is a gaussian of the same intrinsic width, whose trajectory across the line profile yields a precise measure of the misalignment angle and an independent measure of v sin I. We show that even when v sin I is less than the width of the intrinsic line profile, the travelling Doppler "shadow" cast by the planet creates an identifiable distortion in the line profiles which is amenable to direct modelling. Direct measurement of the trajectory of the missing starlight yields self-consistent measures of the projected stellar rotation rate, the intrinsic width of the mean local photospheric line profile, the projected spin-orbit misalignment angle, and the system's centre-of-mass velocity. Combined with the photometric rotation period, the results give a geometrical measure of the stellar radius which agrees closely with values obtained from high-precision transit photometry if a small amount of differential rotation is present in the stellar photosphere.Comment: 8 pages, 5 figures, 2 tables; accepted by MNRA
    • …
    corecore